Gaofen Image Dataset (GID) a large-scale dataset for land use and land cover (LULC) classification.
It contains 150 high-quality Gaofen-2 (GF-2) images
acquired from more than 60 different cities in China.
And these images cover the geographic areas that exceed 50,000 km2.
Images in GID have high intra-class diversity coupled with low inter-class separability.
Therefore, GID can provide the research community with a high-quality data resource to advance
the state-of-the-art in LULC classification.
For the DOTA-v1.0, as described in the paper, it contains 2806 aerial images from different sensors and platforms.
Each image is of the size in the range from about 800 × 800 to 4000 × 4000 pixels
and contains objects exhibiting a wide variety of scales,
orientations, and shapes. These DOTA images are then annotated
by experts in aerial image interpretation using 15
common object categories. The fully annotated DOTA images
contains 188, 282 instances, each of which is labeled
by an arbitrary (8 d.o.f.) quadrilateral.
For more details, refer to the arXiv preprint of DOTA.
AID是多源数据集,里面的谷歌数据来自于不同的遥感影像传感器,共有10000张遥感影像,30个类别。每个类别每一张影像大小固定在600*600,分辨率0.5m~8m,具有多分辨率的特点。
- G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, X. Lu, “AID: A benchmark dataset for performance evaluation of aerial scene classification”, IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3965-3981, 2017.[PDF].
WHU-RS19是从谷歌卫星影像上获取19类遥感影像,可用于场景分类和检索。
相关工作:-G.-S. Xia, W. Yang, J. Delon, Y. Gousseau. H. Maitre, H. Sun, "Structural high-resolution satellite image indexing". Symposium: 100 Years ISPRS - Advancing Remote Sensing Science: Vienna, Austria, 2010